Bishop-Gromov type inequality on Ricci limit spaces
نویسندگان
چکیده
منابع مشابه
On Low Dimensional Ricci Limit Spaces
We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff dimension is not greater than two. We also classify one-dimensional Ricci limit spaces.
متن کاملSymmetric symplectic spaces with Ricci-type curvature
We determine the isomorphism classes of symmetric symplectic manifolds of dimension at least 4 which are connected, simply-connected and have a curvature tensor which has only one non-vanishing irreducible component – the Ricci tensor.
متن کاملGromov Hyperbolic Spaces
A mini monograph on Gromov hyperbolic spaces, which need not be geodesic or proper.
متن کامل2 01 3 Inverse Limit Spaces Satisfying a Poincaré Inequality
We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [HK96]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of exam...
متن کاملLocal Cut Points and Metric Measure Spaces with Ricci Curvature Bounded Below
A local cut point is by definition a point that disconnects its sufficiently small neighborhood. We show that there exists an upper bound for the degree of a local cut point in a metric measure space satisfying the generalized Bishop–Gromov inequality. As a corollary, we obtain an upper bound for the number of ends of such a space. We also obtain some obstruction conditions for the existence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2011
ISSN: 0025-5645
DOI: 10.2969/jmsj/06320419